Materiaalitekniikan TkK tutkielmien Turnitin tarkistus 2025
- Opettaja
Emilia Palo
Materiaalitekniikan TkK tutkielmien Turnitin tarkistus 2025
Opiskelija pystyy selittämään keskeiset vaurioitumismekanismit sekä osaa tulkita faasipiirroksia ja mikrorakenteiden syntymekanismit. Opiskelija tunnistaa keraamien kiderakenteet ja ymmärtää niiden vaikutuksen keraamien ominaisuuksiin. Opiskelija osaa selittää komposiittien rakenteen, valmistusmenetelmät ja niistä seuraavat ominaisuudet yleisellä tasolla. Opiskelija pystyy tulkitsemaan metallien keskeiset korroosiomekanismit ja muovien ominaisuuksien heikentymisen.
Sisältö:
• Faasipiirrokset, aukotonliukoisuus ja jähmettyminen aukottoman
liukoisuuden systeemissä. Binäärinen tasapainopiirros ja sen
jähmettyminen. Mikrorakenteen muodostuminen rauta-hiili seoksissa.
•
Faasimuutoksen kinetiikka, mikrorakenteen muodostuminen isotermisesti
ja jatkuvassa jäähtymisessä. Rauta-hiiliseosten mekaaniset
ominaisuudet.
• Keraamien kiderakenne, faasipiirrokset ja mekaaniset ominaisuudet.
• Partikkelilujitetut komposiitit, kuitulujitetut komposiitit, lujitteen koon ja orientaation vaikutus ominaisuuksiin.
•
Galvaaninen korroosio, rakokorroosio, raerajakorroosio,
valikoivasyöpyminen, eroosiokorroosio, jännityskorroosio, vetyhauraus,
korroosionesto, hapettuminen korkeassa lämpötilassa, polymeerien
ominaisuuksien heikkeneminen
To be successful in manufacturing high performance components using any digital manufacturing technology, a great breadth of knowledge in materials engineering is indispensable. Therefore, this course is custom designed to provide an overview of various material science and engineering principles that are relevant in digital manufacturing such as solidification behaviour, microstructure engineering, the interplay between material properties, mechanical requirements, and production etc. After completing this course, the students shall:
1. Have acquired a basic information of material science and engineering concepts relevant to digital manufacturing such as solidification behaviour, microstructure engineering, powder metallurgy and sintering, heat treatment and hot isostatic pressing, the interplay between material properties, mechanical requirements, and production etc. to succeed in developing high performance components using novel materials through different digital manufacturing processes;
2. Have attained a broader ability to utilize advance materials characterization tools to study digitally manufactured components as well as the raw materials (feedstock) used in various digital manufacturing processes;
3. Be able to utilize different types of feedstock materials such as Solid (wire & powder) and or Liquid (Suspension & Solution precursor) etc. and their significance in various digital manufacturing processes;
The aim of the course is to provide an overview of various material science and engineering principles that are relevant in digital manufacturing such as solidification behaviour, microstructure engineering, the interplay between material properties, mechanical requirements, and production etc.
This course offers a foundational understanding of materials science and engineering principles critical to digital manufacturing. It explores key topics such as solidification behavior, microstructure control, powder metallurgy, heat treatment, and the relationship between material properties and production performance. Students will gain insight into the selection and use of various feedstock forms, solid and liquid, and learn to apply advanced characterization tools to assess both raw materials and finished components. The course equips students with the knowledge needed to develop high-performance parts using innovative materials and digital manufacturing technologies.